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COUPLED PROBLEMS OF MASS TRANSFER BETWEEN SEMI-INFINITELY LARGE
REGIONS DURING A CHEMICAL REACTION OF THE SECOND ORDER

Yu. I. Babenko and N. Ya. Nikitina UDC 532,72:669.015.23:517,9

By the method developed in an earlier study [1], an asymptotic expression (at
times t + «) is derived here for the rate of mass transfer at the boundary be-
tween media when in one of them there takes place a chemical reaction of the
second order.

We consider the earlier problem [2, 3] concerning mass transfer in a semi-infinitely
large region where a chemical reaction of the second order takes place, viz.,

ac, 0%C,
—D kC,C, =0, 1
ot g TR
aC, 02C, (2)
—D—=2 L kCC, =0,
ot dx2 T kGG
0<x<<oo, 0<t<< 00
Cily=0 = A = const; 9Cs =0
0x |y=0 3)

Cilvew = 0; Clymw = B=const; Cylt=o =0; Cylt—0 = B.

The concentration of substance 1 at the boundary is maintained constant. The plane
x = 0 is impermeable to substance 2.

We introduce for the analysis two new functions

Sizci; SzzB—-—C2, ) (4)
so that system (1)-(2) can be rewritten as
as, 028,
—D—* L kS5,(B—S,) =0,
ot e TS 2
A 02S, )
e pZ22 _ kS, (B—S,)=0.
ot Ox?

Conditions (3) are transformed in an obvious manner. It is essential, for the application
of the given method or solution, that Sz = 0 at t = 0 gnd x = =,

Adding the two equations (3), we obtain

0 (St 8)—D-2L (S, 4+8)=0 | 6)
—67( 13 2, axz 1 2] — U

(Si+ Sp)i=w =0; (Si+ Sp)t—0 = 0. (7)
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According to earlier studies [1, 4], problem (6)-(7) with arbitrary boundary conditions
at x = 0 can be replaced by the equation

172 — 3
i+ S)+ VD (Si45) =0, (®)

where the operation of fractional differentiation is defined by the expression
t

oM 1 d _
_ L\ t—viwdn, v< 1.
o 1O Ta—w @ ; (=i imdn v<

With expression (8) writtem for x = 0 and with the boundary conditions as stated origi-
nally (3), we write for the mass flux at the boundary

ac, — gl/2 = A+ B gi/2
—D— =V D A+ B—Ciy=0)=1v D —_— - Cyly=0 |- 9
3% |eeo VD i the=o) = ¥ L the—o ®)
The values of the quantity Ca|x=w in expression (9) is not known at any instant of time.
It is obvious from physical considerations, however, that Calx=q = 0 at t > =,

We will assume that the halfth-order derivative of any functicn which decreases as
t + » approaches zero faster than does t~'/?, This can be easily verified in the case where
Ca]x=o decreases faster than does t ¢ (¢ = const > O being an arbitrary small quantity) as
t + =, because [1, 4]

gl/2 o iT(1—e) —e——--—;—

e P(_l_ﬂa) !
2

At t > »  therefore, the last term in expression (9) can be omitted and the expression
for the rate of mass transfer at the boundary can be written in the final form as

ac, D
M 1/Tt (A + B). (10)

Ox
This expression is identical to that obtained earlier [2, 3] under the assumption that
k -~ » (a momentary reaction spreading as a front). It can be demonstrated that the analyti-
cal solution to the original problem, at any time t, is

_p 9
0x

Therefore, the asymptotic expressions for t -+ «» and k + « are equivalent,

—D

= DY/2 (nf)—1/2A.F (Akt, Bkt).

x==0

Expression (10) has been derived here in a much simpler way than earlier [2], this
method being applicable to a large class of problems in the theory of mass transfer. One
of such problems will be solved here. The proposed method has alsc a substantial drawback,
however; it requires that the diffusion coefficients for substances 1 and 2 within the reac-
tion space be equal.

Let us then proceed to the problem of mass transfer between semi-infinitely large regions.
We assume that the initial distribution of substance 1 (concentration A) over the region
—© < x < 0 is uniform. At instant of time t = O "the barrier is removed" and substance 1
diffused into the reglon 0 << x < «, where 1t reacts with substance 2 which is already there
(initial concentration B) and does not cross the boundary. The problem is to find the mass
flux of substance 1 through the boundary at time t + o,

The diffusion of substance 1 in the left-hand half space is described by the equation
oC, D C,
ot Ox?
and its diffusion in the right-hand half space is described by the system of equations (1)~
(2). The set of initial and boundary conditions is
Ci|x=—w = A; Ci‘.t=0. x<0 = A; Ci§x=u =0
Cilt=0, x>0 = 0; Cyly=w = B; Cili—o, z>0 = B;

axz >x=+0 =0; PCilx=—o0 = Cyly=—r10;

=0, (11)
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, oC ocC :
D% =D =2 . (12)
Ox r=—20 0x x=+40

Using the expressions in [1] or [4] for Eq. (11) describing the process in the left-hand
half space, one can obtain the relation between quantities C, and 3C;/3x in the form

g1/2 —
(A—Cy)—VD o (A—C)=0" (13)

atl/2

(this relation has been written for the function A — C,, because its value at x =.— at
t = 0 is zero).

Writing expression (13) for x = —0 and expression (8) for x = +0, we obtain, after
elimination of the first derivatives (12) with respect to x, an equation for Cl|x=o;

. 91/2 — 1/2
VD [ 4 Cils——o } =VD l—E— + —(Z——‘(Cifx=+u — Coly=+0).

Vi ot Vat | oz
Performing here the operation 3~ */2/3t=*/? yields
Calemio = [—1 (D'/D)1/2 4+ 1] Cllse o + B— A (D'/D)1/2. (14)

It becomes obvious, from physical considerations, that Ca]x=+° approaches a constant
value at t > =« and that three situations are possible here: 1) Ca|x=+° = 0; 2) Calx=+° =§
(0 < § < B); 3) Ca|x=+o = B.

Assuming situation 1) or 2) leads to absurd conclusions. For certain relations be-
tween the parameters expression (l4) yilelds Czlx=+o < 0. We thus must assume situation 3),
which is consistent with the physical aspects of the final stage of the process. After sub-
stance 1 at the boundary has been consumed, the concentration of substance 2 returns to its
initial level. Then expression (14) yields at t - o

VD __ 15
VD VD o)

We will now determine the mass flux of substance 1 through the bohndary on the basis of
relations (13) and (15), viz.,

, 0Cy =7 012 =1 A gl/e vV D
9% o= | VD i A—C=V {Vnt EIVE [ v VD +VD A+f(t)“'

where £(t) > 0 is a decreasing function. By analogy to the preceding problem, we have (a*/‘/
att/3)f = o[(8*/%/5t*/?*)const] at t - ». The sought expréssion for the mass flux is then

_p % VDD 4
0% |xe—o  V"'WD +VD Vat
Accordingly, at t - » the rate of mass transfer is determined only by diffusion and
does not depend on the reiction rate constant. It i1s to be noted that solution of the orig-

inal problem for k = 0 (diffusion without chemical reaction) yields expressions (15) and
(16), which are valid for every t.

Cilx=+0 =

(16)

Thus, solution of the coupled problem with loss of substance 1 in the region —= < x < 0
yields a qualitatively different result than solution of system (1)-(3) with a constant con-
centration of substance 1 at the boundary. The chemical factor, which increases the rate of
mass transfer, is effective only during a short initial period of time t.

An analogous phenomenon, namely transition of the process from the kinetic mode to the
diffusion mode at t =+ «, has been established earlier [5] in the case where the chemical re-
action takes place at the surface and one of the reactants (or both) diffuses from the semi-
infinitely large region.

NOTATION

A and B, initial concentrations of substances 1 and 2, respectively, C; and Ca, concen-
trations of substances 1 and 2, respectively; D, diffusion coefficient for both substances
within the reaction space; D', diffusion coefficient for substance 1l in the region where the
reaction does not take place; 3V/3tV, fractional-differentiation operator; k, reaction rate
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constant; £ and F, arbitrary functions; S; and Sz, functions linearly related to the concen-
trations; x, space coordinate; t, time; and ¥, distribution factor.
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RETRIEVAL OF THE BOUNDARY CONDITIONS FROM THE TEMPERATURE MEASUREMENTS
AT POINTS INSIDE A SYSTEM OF PLANE DOUBLE-LAYER BODIES

A. A. Shmukin, S. V. Pavlyuk, UDC 536.24.02
and N. M. Lazuchenkov

A reverse heat—-conduction problem is reduced to integrating a system of ordinary
differential equations by the method of smoothing splines.

In many specific practical engineering problems there arises the situation where deter~
mining the temperature and the thermal flux at external surfaces in systems of plane double-
layer bodies requires measurement of the temperature as a function of time at internal points
of the system [1]. We will consider the rather general formulation of reverse boundary-
value problems of heat conduction for double~layer plates with an ideal thermal contact at
the joint. For obtaining correct solutions to the reverse heat-conduction problems we will
use the solution to the Cauchy problem [2, 3] and the method of smoothing splines [4].

The heat~conduction equation in a Cartesian system of coordinates, independent for each
plate, will be written as [5]
aT, T,
_sk
ot 0X2
where k = 1, 2 is the consecutive number of each layer, X = x/Re, T = aoct/R3, e = ar/ao,
Xx = R/Ro, a0 and Ro are arbitrary values of, respectively, the thermal diffusivity and
the geometrical dimension, and Ry is the thickness of the k-th layer.

y 0{t<Too, 0T XX, (1)

The conditions of ideal contact and the initial conditions will be stipulated as

Ti[X:Xpl =S 2|X=Xp,2’ (2)

A OT, _ 0y 0Ty
Ry 90X |x=xp, Ry 90X |x=x,, (3
Thli=o = @n (X), 4)

where in expression (3) the plus sign corresponds to systems of coordinates in series and the
minus sign corresponds to systems of coordinates in opposition, 9y (X) in expression (4) char-
acterizing a nonuniform temperature distribution.

We assume that the heat transfer between the surface of the first plate layer and the
ambient medium is subject to a boundary condition of the second kind
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