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COUPLED PROBLEMS OF MASS TRANSFER BETWEEN SEMI-INFINITELY LARGE 

REGIONS DURING A CHEMICAL REACTION OF THE SECOND ORDER 

Yu. I. Babenko and N. Ya. Nikltina UDC 532.72:669.015.23:517.9 

By the method developed in an earlier study [i], an asymptotic expression (at 
times t + ~) is derived here for the rate of mass transfer at the boundary be- 
tween media when in one of them there takes place a chemical reaction of the 
second order. 

We consider the earlier problem [2, 3] concerning mass transfer in a semi-infinitely 
large region where a chemical reaction of the second order takes place, viz., 

OCi . D OzCi + leClC~ = O, 
Ot Ox z 

OC~ D c~gC2 -~- kCtC 2 -~- O, 
Ot Ox 2 

O ~ < x <  oo, O < t < o o ;  

0C2 
Cd~=0 = A = const; ~ ~=0 = O; 

= 0 ;  C2l ,~=|  Cd t=o=O;  C2[t=o = B .  cd~=| 

(1) 

(2) 

(3) 

The concentration of substance i at the boundary is maintained constant. 
x = 0 is impermeable to substance 2. 

We introduce for the analysis two new functions 

S i = C , ;  $ 2 = B - - C 2 ,  

so that system (i)-(2) can be rewritten as 

OS----!t -- D 02Si + kS,  (B -- $2) = O, 
at Ox ~ 

0S2 D 0~$2 - -  kSi  (B - -  $2) = O. 
at o ~  

The plane 

(4) 

(5) 

Conditions 
of the given method or solution, that Sa = 0 at t = 0 and x = ~. 

Adding the two equations (5), we obtain 

O 0 z 
- - ( S ~ , +  $2) - -  D,  (S~ + $2) ---- 0, 
Ot Ox 2 

(S~ + S~)~=,~ = 0; (S~ + S~)t=o = 0. 

(3) are transformed in an obvious manner. It is essential, for theapplication 

(6) 

(7) 
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According to earlier studies [i, 4], problem (6)-(7) with arbitrary boundary conditions 
at x = 0 can be replaced by the equation 

0~/2 (S~ + S2) + l,/O--~ -0 (S~ + S~) 0, (8) 
0 t l /2  Ox 

where the operation of fractional differentiation is defined by the expression 

0 v 1 d [ (t - -  .~)-v ,f (m) d-c, "~ . <  1. 
Ot-----;- f (t) F (1 -- v) at . 1  

0 

With expression (8) written for x = 0 and with the boundary conditions as stated origi- 
nally (3), we write for the mass flux at the boundary _ 

A + B 01/2 C~l~=0~ (9) - -D OC-----L =]/--ff 01/2 (A+B--C21~=o)= v'-D( 
Ox x=o 0tI/2 \ V ~--{ Ot~/2 / 

The values of the quantity CaIx=~ in expression (9) is not known at any instant of time, 
It is obvious from physical considerations, however, that Calx=o = 0 at t § ~. 

We will assume that the halfth-order derivative of any function which decreases as 
t § ~ approaches zero faster than does t -~/a. This can be easily verified in the case where 
Calx=o decreases faster than does t -e (r = const > 0 being an arbitrary small quantity) as 
t § ~, because [i, 4] 

! 
__gu .~ 01/2 t_  ~ i F ( l - - g )  t 

At t § ~, therefore, ghe last term in expression (9) can be omitted and the expression 
for the rate of mass transfer at the boundary can be written in the final form as 

0Ci V / D - -D Ox x=o= ~ ( A - [ - B ) .  ( 1 0 )  

This expression is identical to that obtained earlier [2, 3] under the assumption that 
k § ~ (a momentary reaction spreading as a front). It can be demonstrated that the analyti- 
cal solution to the original problem, at any time t, is 

- -D OCt =D1/2(at)-I/~A.F(Akt, Bkt). 
Ox x=o 

Therefore, the asymptotic expressions for t § ~ and k § ~ are equivalent, 

Expression (i0) has been derived here in a much simpler way than earlier [2], this 
method being applicable to a large class of problems in the theory of mass transfer. One 
of such problems will be solved here. The proposed method has also a substantial drawback, 
however; it requires that the diffusion coefficients for substances 1 and 2 within the reac- 
tion space be equal. 

Let us then proceed to the problem of mass transfer between semi-infinitely large regions. 
We assume that the initial distribution of substance 1 (concentration A) over the region 
-~ < x < 0 is uniform. At instant of time t = 0 "the barrier is removed" and substance 1 
diffused into the region 0~x < ~, where it reacts with substance 2 which is already there 
(initial concentration B) and does not cross the boundary. The problem is to find the mass 
flux of substance 1 through the boundary at time t + ~. 

The diffusion of substance 1 in the left-hand half space is described by the equation 

OC---i-I - D' o2Ci -- O, (i!) 
at o~ 

and its diffusion in the right-hand half space is described by the system of equations (i)- 
(2). The set of initial and boundary conditions is 

Ci l~=-~  = A; Ctlt=o. ~<o = A; Ctt~=. = O; 
Cdt=o, x>o = 0; C=Ix=~ = B;  C2[t=o, x>O = B; 

OC20x x=+O = 0; ~ C d , = - o  = C~]~=+o; 
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D' OCt ~=-o =D OCl X 
ax ax =+o" (12)  

Using the expressions in [i] or [4] for Eq. (ii) describing the process in the left-hand 
half space, one can obtain the relation between quantities Cx and ~Cz/~x in the form 

a'/----~ (A - -C , ) - -V~  a (A_C 0 = 0 (13) OP/2 ax 
(this relation has been written for the function A -- Cx, because its value at x =,--oo at 
t = 0 iS zero). 

Writing expression (13) for x = --0 and expression (8) for x = +0, we obtain, after 
elimination of the first derivatives (12) with respect to x, an equation for Czlx=o: 

U-~- A al/2 clk=-o = V U  B + at-TTT(c,;~=+o --C~k=+o)- 
V-s at 1/2 

Performing here the operation ~-:/a/~t-z/2 yields 

C21,=+o = [~-] (D'/D) I/2 + 1] C~I~=+o + B -- A (D'/D)I/t (14) 

It becomes obvious, from physical considerations, that C, Ix=+o approaches a constant 
value at t § = and that three situations are possible here: l) C~Ix=+o = 0; 2) C=Ix=+o = 
(0 < ~ < B); 3) C Ix:+o = B 

Assuming situation i) or 2) leads to absurd conclusions. For certain relations be- 
tween the parameters expression (14) yields Czlx=+o < O. We thus must assume situation 3), 
which is consistent with the physical aspects of the final stage of the process. After sub- 
stance 1 at the boundary has been consumed, the concentration of substance 2 returns to its 
initial level. Then expression (14) yields at t + 

V~- (15) 
C,l.=+o = ~_1 V V - + V - #  A" 

We will now determine the mass flux of substance i through the boundary on the basis of 
relations (13) and (15), vlz., 

0 I A +12[ ]} - m '  <C,ax . . . .  V-~ at,/~a'/~ (A_c,)=V-b-~ V~ at, /~ r  ~ A+ f(O , 

where f(t) > 0 is a decreasing function. By analogy to the preceding problem, we have (~i/a/ 
~tz/2)f = o[(~z/2/~t*/2)const] at t + ~. The sought expression for the mass flux is then 

- - D '  ac'  ~=-o V ~  A (16) 
ax = ~-'VD~+VM " V~T 

Accordingly, at t + ~ the rate of mass transfer is determined only by diffusion and 
does not depend on the reaction rate constant. It is to be noted that solution of the orig- 
inal problem for k = 0 (diffusion without chemical reaction) yields expressions (15) and 
(16), which are valid for every t. 

Thus, solution of the coupled problem with loss of substance 1 in the region --~ < x < 0 
yields a qualitatively different result than solution of system (1)-(3) with a constant con- 
centration of substance 1 at the boundary. The chemical factor, which increases the rate of 
mass transfer, is effective only during a short initial period of time t. 

An analogous phenomenon, namely transition of the process from the kinetic mode to the 
diffusion mode at t + ~, has been established earlier [5] in the case where the chemical re- 
action takes place at the surface and one of the reactants (or both) diffuses from the semi- 
infinitely large region. 

NOTATION 

A and B, initial concentrations of substances 1 and 2, respectively, CI and Ca, concen- 
trations of substances 1 and 2, respectively; D, diffusion coefficient for both substances 
within the reaction space; D', diffusion coefficient for substance 1 in the region where the 
reaction does not take place; ~v/~tv, fractional-dlfferentiation operator; k, reaction rate 
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constant; f and F, arbitrary functions; S: and Sa, functions linearly related to the concen- 
trations; x, space coordinate; t, time; and ~, distribution factor. 
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RETRIEVAL OF THE BOUNDARY CONDITIONS FROM THE TEMPERATURE MEASUREMENTS 

AT POINTS INSIDE A SYSTEM OF PLANE DOUBLE-LAYER BODIES 

A. A. Shmukin, S. V. Pavlyuk, 
and N. M. Lazuchenkov 

UDC 536.24.02 

A reverse heat-conduction problem is reduced to in=egrating a system of ordinary 
differential equations by the method of smoothing splines. 

In many specific practical engineering problems there arises the situation where deter- 
mining the temperature and the thermal flux at external surfaces in systems of plane double- 
layer bodies requires measurement of the temperature as a function of time at internal points 
of the system [i]. We will consider =he rather general formulation of reverse boundary- 
value problems of heat conduction for double-layer plates with an ideal thermal contact at 
the joint. For obtaining correct solutions to the reverse heat-conduction problems we will 
use the solution to the Cauchy problem [2, 3] and the method of smoothing splines [4]. 

The heat-conduction equation in a Cartesian system of coordinates, independent for each 
plate, will be written as [5] 

OTh O~T~ 
----ek--, 0~T<oo, O ~ X ~ X ~ ,  (1) 

O~ OX 2 

where k = I, 2 is the consecutive number of each layer, X = x/Ro, T = aot/R~, ~k = ak/ao, 
X k = Rk/Ro, ao and Ro are arbitrary values of, respectively, the thermal diffusivity and 
the geometrical dimension, and R k is the thickness of the k-th layer. 

The conditions of ideal contact and the initial conditions will be stipulated as 

Ti[x=xp, = T~lx=x~, (2) 

+ ~___!_l OT~ llx=xB~- ~2 OT2 . ] 
- -  Ro OX Ro OX ]x=x p, ~' (3) 

Tkl~=o = %(X), (4) 

where in expression (3) the plus sign corresponds to systems of coordinates in series and the 
minus sign corresponds to systems of coordinates in opposition, ~k(X) in expression (4) char- 
acterizing a nonuniform temperature distribution. 

We assume that the heat transfer between the surface of the first plate layer and the 
ambient medium is subject to a boundary condition of the second kind 
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